Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napus

Abstract
Cell suspension-derived protoplasts of a chlorsulfuron-resistant (GH50) strain of Arabidopsis thaliana cv Columbia were X-irradiated at 60 or 90 krad, to facilitate the elimination of GH50 donor chromosomes in fusion products. Irradiated GH50 protoplasts were fused, with polyethylene glycol, to protoplasts derived from stem epidermal strips of Brassica napus cv Westar. Chlorsulfuron-resistant colonies were selected in vitro and then transferred to shoot and root regeneration medium. Seventeen hybrid lines were regenerated in vitro, and eight were successfully established in the greenhouse, where they flowered. These eight asymmetric hybrids were intermediate in vegetative morphology between Arabidopsis and Brassica. The flowers from these hybrids were male-sterile with abnormal petal and pistil structures. Zymograms for phosphoglucomutase, esterase, and peroxidase showed the presence of all parental isozymes in each of the hybrids tested. Nuclear hybridity was also confirmed for the ribosomal RNA genes using a wheat rDNA probe; however, the chloroplast genome in each of the hybrids was derived solely from the Brassica parent. All selected somatic hybrids were capable of rooting at levels of chlorsulfuron which were inhibitory to unfused Brassica plantlets. The degree of herbicide resistance in the hybrid shoots is presently being evaluated.