Separable coordinate systems for the Hamilton-Jacobi, Klein-Gordon and wave equations in curved spaces
- 1 April 1976
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 9 (4) , 519-533
- https://doi.org/10.1088/0305-4470/9/4/008
Abstract
There are exactly two types of separable coordinates for the Hamilton-Jacobi, Klein-Gordon and wave equations. One type can be reduced to separable coordinates adapted to a (conformal) Killing vector, the other type to orthogonal coordinates adapted to eigenvectors of a (conformal) Killing tensor. A canonical form of the metric tensor which is a necessary and sufficient condition for the existence of a separable coordinate system for the Hamilton-Jacobi equation is derived. For the Klein-Gordon equation the metric is further restricted by a condition on the Ricci tensor. Sufficient conditions for the existence of separable coordinates are given in terms of linear or quadratic constants of motion.Keywords
This publication has 13 references indexed in Scilit:
- Separation of variables in the Hamilton–Jacobi, Schrödinger, and related equations. I. Complete separationJournal of Mathematical Physics, 1975
- On Killing tensors and constants of motionJournal of Mathematical Physics, 1973
- On quadratic first integrals of the geodesic equations for type {22} spacetimesCommunications in Mathematical Physics, 1970
- Multipole Moments. I. Flat SpaceJournal of Mathematical Physics, 1970
- Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s EquationsCommunications in Mathematical Physics, 1968
- Separable Systems of StackelAnnals of Mathematics, 1934
- Bemerkung über separierbare Systeme in der WellenmechanikMathematische Annalen, 1928
- Le equazioni di hamilton-jacobi che si integrano per separazione di variabiliRendiconti del Circolo Matematico di Palermo Series 2, 1912
- Sulla integrazione delle equazioni di Hamilton-Jacobi per separazione di variabiliMathematische Annalen, 1908
- Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabiliMathematische Annalen, 1904