Incorporation of Short-Lived 10 Be in a Calcium-Aluminum-Rich Inclusion from the Allende Meteorite

Abstract
Enrichments in boron-10/boron-11 in a calcium-aluminum–rich inclusion from the Allende carbonaceous chondrite are correlated with beryllium/boron in a manner indicative of the in situ decay of short-lived beryllium-10. Because this radionuclide is produced only by nuclear spallation reactions, its existence in early solar system materials attests to intense irradiation processes in the solar nebula. The particle fluence inferred from the initial beryllium-10/beryllium-9 is sufficient to produce other short-lived nuclides, calcium-41 and manganese-53, found in meteorites, but the high canonical abundance of aluminum-26 may still require seeding of the solar system by radioactive stellar debris.