Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol
- 1 March 2008
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 28 (6) , 1915-1923
- https://doi.org/10.1128/mcb.01541-07
Abstract
A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 A(3), effectively doubling the size of the GR dexamethasone-binding pocket of 540 A(3) and yet leaving the structure of the coactivator binding site intact. DAC occupies only approximately 50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.Keywords
This publication has 39 references indexed in Scilit:
- Novel glucocorticoids containing a 6,5-bicyclic core fused to a pyrazole ring: Synthesis, in vitro profile, molecular modeling studies, and in vivo experimentsBioorganic & Medicinal Chemistry Letters, 2007
- Structural plasticity in the oestrogen receptor ligand‐binding domainEMBO Reports, 2007
- Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic indexExperimental Dermatology, 2006
- Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activityGenes & Development, 2006
- Conformational adaptation of nuclear receptor ligand binding domains to agonists: Potential for novel approaches to ligand designThe Journal of Steroid Biochemistry and Molecular Biology, 2005
- Design and evaluation of novel nonsteroidal dissociating glucocorticoid receptor ligandsBioorganic & Medicinal Chemistry Letters, 2004
- Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptorNature, 2003
- [20] Processing of X-ray diffraction data collected in oscillation modePublished by Elsevier ,1997
- Detection, delineation, measurement and display of cavities in macromolecular structuresActa Crystallographica Section D-Biological Crystallography, 1994
- Anti-inflammatory pyrazolo-steroids: Potent glucocorticoids containing bulky a-ring substituents and no C3-carbonylBiochemical and Biophysical Research Communications, 1979