Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets
- 1 November 1996
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Optimization
- Vol. 6 (4) , 1087-1105
- https://doi.org/10.1137/s1052623495284029
Abstract
No abstract availableKeywords
This publication has 22 references indexed in Scilit:
- Stability Theory for Parametric Generalized Equations and Variational Inequalities Via Nonsmooth AnalysisTransactions of the American Mathematical Society, 1994
- An inverse mapping theorem for set-valued mapsProceedings of the American Mathematical Society, 1994
- A new proof of Robinson's homeomorphism theorem for pl-normal mapsLinear Algebra and its Applications, 1993
- Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimizationAnnals of Operations Research, 1990
- Relationships of properties of piecewise affine maps over ordered fieldsLinear Algebra and its Applications, 1990
- Metric regularity, openness and Lipschitzian behavior of multifunctionsNonlinear Analysis, 1989
- Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued mapsJournal of Mathematical Analysis and Applications, 1988
- On inertia and schur complement in optimizationLinear Algebra and its Applications, 1987
- Lipschitzian properties of multifunctionsNonlinear Analysis, 1985
- Local structure of feasible sets in nonlinear programming, part II: NondegeneracyPublished by Springer Nature ,1984