Multifractality: Generic Property of Eigenstates of 2D Disordered Metals

Abstract
The distribution function of local amplitudes of eigenstates of a two-dimensional disordered metal is calculated. Although the distribution of comparatively small amplitudes is governed by laws similar to those known from the random matrix theory, its decay at larger amplitudes is non-universal and much slower. This leads to the multifractal behavior of inverse participation numbers at any disorder. From the formal point of view, the multifractality originates from non-trivial saddle-point solutions of supersymmetric $\sigma$-model used in calculations.
All Related Versions