Prediction of Wall-Jet and Wall-Wake Flows

Abstract
An existing numerical procedure for solving the steady, two-dimensional, constant property form of the Navier–Stokes equations, has been used to obtain predictions of mean and fluctuating properties downstream of a two-dimensional wall jet. The Prandtl–Kolmogorov model of turbulence, with a simple empirical expression for the length scale, is shown to permit satisfactory predictions over a wide range of flow situations. These flow situations are relevant to the design of film-cooling slots.

This publication has 17 references indexed in Scilit: