Semi-discrete Galerkin approximation method applied to initial boundary value problems for Maxwell's equations in anisotropic, inhomogeneous media
- 1 January 1981
- journal article
- Published by Cambridge University Press (CUP) in Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- Vol. 89 (1-2) , 125-133
- https://doi.org/10.1017/s0308210500032406
Abstract
No abstract availableThis publication has 8 references indexed in Scilit:
- Study of an implicit scheme for integrating Maxwell's equationsComputer Methods in Applied Mechanics and Engineering, 1980
- Über die approximation der lösungen der maxwellschen randwertaufgabe mit der methode der finiten elementeApplicable Analysis, 1980
- Error estimates for the finite element approximation to a maxwell-type boundary value problemNumerical Functional Analysis and Optimization, 1980
- On convergence and error estimates for the horizontal line method applied to Maxwell's initial boundary problem in anisotropic, inhomogeneous mediaProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1980
- The convergence of the horizontal line method for Maxwell's equationsMathematical Methods in the Applied Sciences, 1979
- Error Estimates for Finite Element Methods for Second Order Hyperbolic EquationsSIAM Journal on Numerical Analysis, 1976
- $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic EquationsSIAM Journal on Numerical Analysis, 1973
- A Priori $L_2 $ Error Estimates for Galerkin Approximations to Parabolic Partial Differential EquationsSIAM Journal on Numerical Analysis, 1973