Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology

Abstract
We have newly developed strained-Si MOSFET's on a SiGe-on-insulator (strained-SOI) structure fabricated by separation-by-implanted-oxygen (SIMOX) technology. Their electron and hole mobility characteristics have been experimentally studied and compared to those of control SOI MOSFET's. Using an epitaxial regrowth technique of a strained-Si film on a relaxed-Si/sub 0.9/Ge/sub 0.1/ layer and the conventional SIMOX process, strained-Si (20 nm thickness) layer on fully relaxed-SiGe (340 nm thickness)-on-buried oxide (100 nm thickness) was formed, and n-and p-channel strained-Si MOSFET's were successfully fabricated. For the first time, the good FET characteristics were obtained in both n-and p-strained-SOI devices. It was found that both electron and hole mobilities in strained-SOI MOSFET's were enhanced, compared to those of control SOI MOSFET's and the universal mobility in Si inversion layer.