5-HT1C receptors in the serotonergic control of periaqueductal gray induced aversion in rats

Abstract
The functional role of brain 5-HT and 5-HT receptor subtypes in periaqueductal gray (PAG) induced aversion has been investigated in rats. Antiaversive effects were found with the serotonin agonists TFMPP, mCPP and DOI but not with RU 24969 which was found to facilitate PAG aversion. The first three serotonin agonists share potent 5-HT1C activity while RU 24969 differs with a high 5-HT1A activity. Proaversive effects were found with the mixed 5-HT1C/5-HT2 antagonists cyproheptadine and ritanserin; this effect was already reported for the mixed 5-HT1C/5-HT2 antagonists metergoline and mianserin and is opposite to the effects of the selective 5-HT2 antagonists ketanserin, pirenperone, trazodone and spiperone. The antiaversive effects of mCPP (1 mg/kg) could be prevented by pretreatment of the animals with mianserin (1 and 10 mg/kg). These results suggest that 5-HT1C receptors play an important role in the serotonergic control of PAG aversion. 5-HT1C receptor activation seems to mediate antiaversive effects whereas acute 5-HT1C receptor blockade appears to facilitate PAG aversion. Functional interactions take place between several receptor types in the in vivo control of PAG aversion, where 5-HT1C receptors appear to play a predominant function.