Abstract
Summary: Quantitative traits measured over pedigrees of individuals may be analysed using maximum likelihood estimation, assuming that the trait has a multivariate normal distribution. This approach is often used in the analysis of mixed linear models. In this paper a robust version of the log likelihood for multivariate normal data is used to construct M‐estimators which are resistant to contamination by outliers. The robust estimators are found using a minimisation routine which retains the flexible parameterisations of the multivariate normal approach. Asymptotic properties of the estimators are derived, computation of the estimates and their use in outlier detection tests are discussed, and a small simulation study is conducted.