Effect of Nitrous Oxide on Local Cerebral Glucose Utilization in Rats

Abstract
The influence of 70–80% N2O on local local cerebral glucose utilization (CMRg1) in the rat brain was studied with the [14C]deoxyglucose method in minimally restrained, spontaneously breathing animals 75 min following discontinuation of halothane anaesthesia. Nitrous oxide was found to have only small effects on local CMRg1 in the majority of the 25 structures analyzed. When corrections were made for a small difference in body temperature between nitrous oxide–breathing animals and those breathing air, nitrous oxide was found to significantly increase local CMRg1 in some subcortical structures by 15–25% (red nucleus, thalamus, geniculate bodies, and superior colliculus), and to decrease local CMRg1 in nucleus accumbens and sensorimotor cortex by comparable amounts. Thus, although nitrous oxide does not alter overall glucose utilization in the brain, it differentially affects CMRg1 in some brain structures.