Secondary-electron production pathways determined by coincidence electron spectroscopy

Abstract
The production of secondary electrons by fast (100 keV) electrons is investigated by analyzing the time coincidence between inelastically scattered incident electrons and energy-filtered secondary electrons. Thin conducting and semiconducting films show differences in both the coincidence and generation spectra at energies near the bulk-plasmon excitation, suggesting that plasmon decay does not play a central role in the production of secondary electrons in Si. At primary energy losses greater than 35 eV, the secondary-electron production rate is proportional to the energy deposited by the incident electrons.