Fluorine-containing analogs of intermediates in the shikimate pathway

Abstract
The phosphoenolpyruvate analog (Z)-phosphoenol-3-fluoropyruvate is a substrate for phenylalanine-inhibitable 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthase from Escherichia coli. In the presence of excess erythrose 4-phosphate, apparent Km values of 65 and 38 .mu.M were observed for phosphoenol-3-fluoropyruvate and phosphoenolpyruvate, respectively. Because the apparent Vmax for phosphoenol-3-fluoropyruvate is only 1.17% of that for phosphoenolpyruvate, the former can be studied as an inhibitor of 3-deoxy-arabino-heptulosonic acid-7-phosphate synthase. Kinetic experiments showed phosphoenol-3-fluoropyruvate to be competitive with respect to phosphoenolpyruvate. Two distinguishable Ki [inhibition constant] values of 8 and 48 .mu.M were obtained. The product (3S)-3-deoxy-3-fluoro-arabino-heptulosonic acid 7-phosphate was purified, characterized and acted as a substrate for 5-dehydroquinate synthase. 3-Deoxy-3-fluoro-arabino-heptulosonic acid 7-phosphate, in contrast to 3-deoxy-arabino-heptulosonic acid 7-phosphate, reacts slowly or not at all with reagents specific for 2-keto-3-deoxy sugars and is relatively resistant to oxidative cleavage by sodium periodate. The expected product of periodate oxidation, 3-fluoro-3-formylpyruvate, cannot be detected. This observation was clarified by studies with model compounds.