Simulation of Ion Trajectories near Submicron-Patterned Surface Including Effects of Local Charging and Ion Drift Velocity toward Wafer

Abstract
Ion trajectories near a submicron-patterned surface were investigated using numerical simulations including the effects of local charging on the patterned surface and ion drift velocity toward the wafer. The simulation results were also discussed relative to the etched profile characteristics in electron cyclotron resonance (ECR) plasmas with a divergent magnetic field. Since the pattern size was much smaller than the Debye length, charge neutrality was not satisfied on the submicron-patterned surface. The simulated ion trajectories were largely deflected at the inside of the outermost lines of line-and-space patterns. Moreover, the ion trajectory deflection was reduced with increasing ion drift velocity. These simulation results showed a similar tendency as the etching characteristics.

This publication has 4 references indexed in Scilit: