Hardware-efficient fair queueing architectures for high-speed networks

Abstract
In emerging communication networks (B-ISDN based on asynchronous transfer mode (ATM) technology), a single link may carry traffic for thousands of connections with different traffic parameters and quality-of-service requirements. High-speed links, coupled with small packet/cell sizes, require efficient switch architectures that can handle cell arrivals and departures every few microseconds, or faster. This paper presents a collection of self-clocked fair queueing (SCFQ) architectures amenable to efficient hardware implementation in network switches. Exact and approximate implementations of SCFQ efficiently handle a moderate range of connection bandwidth parameters, while hierarchical arbitration schemes scale to a large range of throughput requirements. Simulation experiments demonstrate that these architectures divide link bandwidth fairly on a small time scale, preserving connection bandwidth and burstiness properties.

This publication has 19 references indexed in Scilit: