A role for elevated H-2 antigen expression in resistance to neoplasia caused by radiation-induced leukemia virus. Enhancement of effective tumor surveillance by killer lymphocytes.
Open Access
- 1 April 1979
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 149 (4) , 898-909
- https://doi.org/10.1084/jem.149.4.898
Abstract
Resistance to neoplasia caused by radiation-induced leukemia virus (RadLV) is mediated by gene(s) in the H-2D region of the major histocompatibility complex. The previous observation that rapid increases in cellular synthesis and cell-surface expression of H-2 antigens are detectable immediately after virus inoculation has suggested that altered expression of H-2 antigens may play a significant role in the mechanism(s) of host defense to virus infection. This concept is supported by the following observations. First, cell-mediated immunity against RadLV transformed or infected cells can be detected with ease when H-2-positive target cells are used in the cell-mediated lympholysis (CML) assay. (Although RadLV transformed cells obtained from overtly leukemic animals and maintained in tissue culture are H-2 negative, these cells can regain their H-2 phenotype by in vivo passage in normal animals. The H-2-negative cells are poor targets in a CML assay.) Second, resistant mice develop greater numbers of effectors when infected with RadLV than do susceptible mice. Third, injection of normal (uninfected) thymocytes into syngeneic recipients of resistant or susceptible H-2 type does not stimulate a CML response. However, injection of RadLV infected thymocytes from resistant mice produces a vigorous CMI response, and such thymocytes elicit the strongest response at a time when both H-2 and viral antigen expression is elevated. By contrast, injection of infected thymocytes from susceptible mice, which express viral antigens, but low levels of H-2 antigens, does not stimulate a CML reaction. These findings may explain the easier induction of leukemia found by many investigators when virus is inoculated into neonatal mice and the preferential thymus tropism of some oncogenic type-C RNA virus. Cells expressing very low levels of H-2, such as thymocytes, may serve as permissive targets for virus infection because they lack an important component (H-2 antigens) of the dual or altered recognition signal required to trigger a defensive host immune response.This publication has 16 references indexed in Scilit:
- Increased synthesis and expression of H-2 antigens on thymocytes as a result of radiation leukemia virus infection: a possible mechanism for H-2 linked control of virus-induced neoplasia.The Journal of Experimental Medicine, 1978
- Cytotoxic T cells learn specificity for self H–2 during differentiation in the thymusNature, 1978
- Variations in viral gene expression in friend virus-transformed cell lines congenic with respect to the H-2 locusCell, 1978
- Occurrence of restricted suppressor T-cell activity in man.The Journal of Experimental Medicine, 1977
- Genetic control of cell-mediated responsiveness to an AKR tumor-associated antigen: mapping of the locus involved to the I region of the H-2 complex.The Journal of Experimental Medicine, 1977
- Analysis of H-2 and Ia molecules by two-dimensional gel electrophoresis.The Journal of Experimental Medicine, 1977
- Genetic control of radiation leukemia virus-induced tumorigenesis. I. Role of the major murine histocompatibility complex, H-2.The Journal of Experimental Medicine, 1977
- The importance of the serologically detectable histocompatibility antigens in the induction and effector step of cell‐mediated lysisEuropean Journal of Immunology, 1977
- Polypeptides of Moloney sarcoma-leukemia virions: Their resolution and incorporation into extracellular virionsVirology, 1974
- Leukemogenic Activity of Filtrates from Radiation-Induced Lymphoid Tumors of MiceScience, 1959