Quantitative prediction of semiconductor laser characteristics based on low intensity photoluminescence measurements

Abstract
A general scheme for the determination of vital operating characteristics of semiconductor lasers from low intensity photoluminescence spectra is outlined and demonstrated. We describe a comprehensive model that allows us to determine properties of the running device like gain spectra, peak gain wavelengths, bandwidths or differential gains, as well as inhomogeneous broadening and actual carrier densities of PL-signals. This information can then be used to compute characteristics like the temperature dependence of the gain, threshold densities, optical field distributions or near-field and far-field outputs.