Engineering of Vascularized Transplantable Bone Tissues: Induction of Axial Vascularization in an Osteoconductive Matrix Using an Arteriovenous Loop
Top Cited Papers
- 1 July 2006
- journal article
- research article
- Published by Mary Ann Liebert Inc in Tissue Engineering
- Vol. 12 (7) , 1721-1731
- https://doi.org/10.1089/ten.2006.12.1721
Abstract
Introduction: Vascularization remains an obstacle to engineering of larger volume bone tissues. Our aim was to induce axial vascularization in a processed bovine cancellous bone (PBCB) matrix using an arteriovenous (AV) loop (artery, vein graft, and vein). Methods: Custom-made PBCB discs (9×5 mm) were implanted into rats. In group A (n= 19), the matrices were inserted into microsurgically constructed AV loops between the femoral vessels using a vein graft from the contralateral side. In group B (n = 19), there was no vascular carrier. The matrices were encased in isolation chambers. After 2, 4, and 8 weeks, the animals were perfused with India ink via the abdominal aorta. Matrices were explanted and subjected to histological and morphometric analysis. Results were compared with intravital dynamic micro–magnetic resonance imaging and scanning electron microscopy images of vascular corrosion replicas. Results: In group A, significant vascularization of the matrix had occurred by the 8th week. At this time, vascular remodeling with organization into vessels of different sizes was evident. Blood vessels originated from all 3 zones of the AV loop. Group A was significantly superior to group B in terms of vascular density and vascularization kinetics. Discussion: This study demonstrates for the first time successful vascularization of solid porous matrices by means of an AV loop. Injection of osteogenic cells into axially prevascularized matrices may eventually create functional bioartificial bone tissues for reconstruction of large defects.Keywords
This publication has 26 references indexed in Scilit:
- Differentiation of Osteoblasts in Three-Dimensional Culture in Processed Cancellous Bone Matrix: Quantitative Analysis of Gene Expression Based on Real-Time Reverse Transcription- Polymerase Chain ReactionTissue Engineering, 2005
- Prefabrication of Vascularized Bone Graft Using Guided Bone RegenerationTissue Engineering, 2004
- Capillary Vessel Network Integration by Inserting a Vascular Pedicle Enhances Bone Formation in Tissue-Engineered Bone Using Interconnected Porous Hydroxyapatite CeramicsTissue Engineering, 2004
- Präkonditionierung und Prälaminierung gestielter und mikrovaskulär anastomosierter Lappenplastiken mit der VakuumtherapieLaryngo-Rhino-Otologie, 2003
- In VivoMagnetic Resonance Imaging Explorative Study of Ectopic Bone Formation in the RatTissue Engineering, 2002
- Tissue engineering of boneMinimally Invasive Therapy & Allied Technologies, 2002
- Formation of New Tissue from an Arteriovenous Loop in the Absence of Added Extracellular MatrixTissue Engineering, 2000
- Evaluation of Osteoblast Response to Porous Bioactive Glass (45S5) Substrates by RT-PCR AnalysisTissue Engineering, 2000
- The Use of Coralline Hydroxyapatite in a “Biocomposite” Free FlapPlastic and Reconstructive Surgery, 1991