ON THE CALCULATION OF SYMMETRIC WAKES I. TWO-DIMENSIONAL FLOWS

Abstract
A numerical method is presented for calculating the symmetric wakes of two-dimensional bodies for incompressible laminar and turbulent flows. The appropriate thin shear layer equations are solved by using Keller's two-point finite-difference method. To account for the inner shear layer generated by the change of boundary conditions from no slip on the body to smooth flow on the axis of symmetry, a double-structured numerical scheme is used at the trailing edge. The Reynolds shear stress term is modeled by a modified version of the algebraic eddy viscosity approach of Cebeci and Smith. A comparison of centerline velocities for laminar wake flows with zero pressure gradient indicates excellent agreement with those given by Goldstein. In addition, several laminar temperature profiles past a flat plate are computed for several Prandtl numbers. Similar calculations for turbulent wake flows also indicate excellent agreement with the experimental data of Chevray and Kovasznay and show that the centerline velocities as well as the velocity profiles across the layer can be computed satisfactorily with the present method. Finally, a set of wake calculations is presented for flows with pressure gradient.