Artificial and Solar UV Radiation Induces Strand Breaks and Cyclobutane Pyrimidine Dimers in Bacillus subtilis Spore DNA

Abstract
The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 μM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N′-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the α- and β-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.

This publication has 47 references indexed in Scilit: