Observation of confinement-dependent exciton binding energy of GaN quantum dots

Abstract
The photoluminescence emission peak energy of GaN quantum dots was observed to shift to higher energy with decreasing quantum dot size. This effect was found to be a combination of a blueshift from the confinement-induced shift of the electronic levels and a redshift from the increased Coulomb energy induced by a compression of the exciton Bohr radius. From this observation, absolute values of the exciton binding energy as a function of quantum dot size are determined.