Retinoic acid‐regulated expression of proteolipid protein and myelin‐associated glycoprotein genes in C6 glioma cells

Abstract
The effect of retinoic acid (RA) on the expression of myelin-specific genes, i.e., proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) in rat glioma C6 cells, was analyzed by Northern blot hybridization. RA-treatment increased the steady-state level of the PLP-specific messages within one day alter RA administration and the upregulation reached a maximum on the third day. Concomitantly, the expression of MAG-specific messages in the RA-treated C6 cells dropped below the detectability limit. The expression of the PLP gene was directly related to the RA concentration increasing to approximately 44- fold over the control (untreated cells) level at 10−6 RA. The stimulatory effect was vitiated by cyclohex-imide indicating the involvement of intermediate genes in the PLP gene activation. The total cellular RNA content and the level of cyclophilin mRNA was not changed by the RA-treatment. The present data indicate that RA can be a potent modulator of the myelin-specific gene expression. Furthermore, the reciprocal response of PLP versus MAG genes to RA demonstrates that these two genes utilize different regulatory mechanisms.