Inhibitors of glycosphingolipid biosynthesis reduce transepithelial electrical resistance in MDCK I and FRT cells

Abstract
Madin-Darby canine kidney (MDCK) I and Fisher rat thyroid (FRT) cells exhibit transepithelial electrical resistance (TER) values in excess of 5,000 Ω · cm2. When these cells were incubated in the presence of various inhibitors of sphingolipid biosynthesis, a >5-fold reduction of TER was observed without changes in the gate function for uncharged solutes or the fence function for apically applied fluorescent lipids. The localization of ZO-1 and occludin was not altered between control and inhibitor-treated cells, indicating that the tight junction was still intact. Furthermore, the complexity of tight junction strands, analyzed by freeze-fracture microscopy, was not reduced. Once the inhibitor was removed and the cells were allowed to synthesize sphingolipids, a gradual recovery of the TER was observed. Interestingly, these inhibitors did not attenuate the TER of MDCK II cells, a cell line that typically exhibits values below 800 Ω · cm2. These results suggest that glycosphingolipids play a role in regulating the electrical properties of epithelial cells.

This publication has 47 references indexed in Scilit: