Rapid behavior-based identification of neuroactive small molecules in the zebrafish

Top Cited Papers
Open Access
Abstract
Despite the need for new psychoactive drugs, there are few robust approaches for discovering novel neuroactive molecules. Development of a behavior-based high-throughput screen in zebrafish led to the discovery of molecules with neurological effects. Translating the complex behavioral phenotypes elicited by compounds into a simple barcode enabled identification of their mechanism of action. Neuroactive small molecules are indispensable tools for treating mental illnesses and dissecting nervous system function. However, it has been difficult to discover novel neuroactive drugs. Here, we describe a high-throughput, behavior-based approach to neuroactive small molecule discovery in the zebrafish. We used automated screening assays to evaluate thousands of chemical compounds and found that diverse classes of neuroactive molecules caused distinct patterns of behavior. These 'behavioral barcodes' can be used to rapidly identify new psychotropic chemicals and to predict their molecular targets. For example, we identified new acetylcholinesterase and monoamine oxidase inhibitors using phenotypic comparisons and computational techniques. By combining high-throughput screening technologies with behavioral phenotyping in vivo, behavior-based chemical screens can accelerate the pace of neuroactive drug discovery and provide small-molecule tools for understanding vertebrate behavior.