Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro
- 29 October 2004
- journal article
- research article
- Published by Wiley in Journal of Cellular Biochemistry
- Vol. 94 (1) , 81-87
- https://doi.org/10.1002/jcb.20313
Abstract
1,25‐Dihydroxyvitamin D plays an important role in the regulation of osteoblast gene expression, regulating the expression of bone matrix proteins as well as that of Runx2, a key regulator of osteoblast differentiation. Studies in mice lacking the vitamin D receptor (VDR) have revealed that the actions of the VDR on the skeleton are not required in the setting of normal mineral ion homeostasis. Since paracrine and endocrine factors can compensate for gene defects in vivo, studies were performed to determine whether ablation of the VDR alters the program of osteoblast differentiation in vitro. Studies in primary calvarial cultures revealed that ablation of the VDR enhanced osteoblast differentiation. The cells from the VDR null mice exhibited an earlier onset and increased magnitude of alkaline phosphatase activity, as well as an earlier and sustained increase in mineralized matrix formation, demonstrating that this enhancement persists throughout the program of osteoblast differentiation. The expression of bone sialoprotein, which enhances mineralization, was also increased in the VDR null cultures. To determine whether the increase in osteoblast differentiation was associated with an increase in the number of osteogenic progenitors, the number of osteoblastic colony forming units (CFU‐OB) was evaluated. There was a twofold increase in the number of CFU‐OB in the cultures isolated from the VDR null mice. Furthermore, the VDR null CFU‐OB demonstrated an earlier onset and higher magnitude of expression of alkaline phosphatase activity when compared to the CFU‐OB from their wild‐type control littermates. These studies demonstrate that the VDR attenuates osteoblast differentiation in vitro and suggest that other endocrine and paracrine factors modulate the effect of the VDR on osteoblast differentiation in vivo.Keywords
This publication has 33 references indexed in Scilit:
- In vitro differentiation of embryonic stem cells into mineralized osteoblastsDifferentiation, 2003
- Mouse embryo‐derived NIH3T3 fibroblasts adopt an osteoblast‐like phenotype when treated with 1α,25‐dihydroxyvitamin D3 and dexamethasone in vitroJournal of Cellular Physiology, 2002
- Cloning and Characterization of a Novel WD-40 Repeat Protein That Dramatically Accelerates Osteoblastic DifferentiationJournal of Biological Chemistry, 2001
- Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineageThe FASEB Journal, 2000
- Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin DCell and tissue research, 1999
- Conditionally Immortalized Murine Osteoblasts Lacking the Type 1 PTH/PTHrP ReceptorJournal of Bone and Mineral Research, 1998
- The Nuclear Vitamin D Receptor: Biological and Molecular Regulatory Properties RevealedJournal of Bone and Mineral Research, 1998
- Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvaria cellsEndocrinology, 1993
- 1,25-Dihydroxyvitamin D-Responsive Element and Glucocorticoid Repression in the Osteocalcin GeneScience, 1989
- Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitroDevelopmental Biology, 1989