Preparation of molybdenum nitride thin films by N+ ion implantation

Abstract
A series of molybdenum nitride films were synthesized by implanting energetic nitrogen ions into molybdenum thin films. The resulting films were characterized using x-ray diffraction to determine the effects of nitrogen ion dose (4 × 1016−4 × 1017 N+/cm2), accelerating voltage (50–200 kV), and target temperature (∼298–773 K) on their structural properties. The order of structural transformation with increased incorporation of nitrogen ions into the Mo film can be summarized as follows: Mo → γ−Mo2N → δ−MoN. Nitrogen incorporation was increased by either increasing the dose or decreasing the ion energy. At elevated target temperatures the metastable B1–MoN phase was also produced. In most cases the Mo nitride crystallites formed with the planes of highest atomic density parallel to the substrate surface. At high ion energies preferential orientation developed so that the more open crystallographic directions aligned with the ion beam direction. We tentatively attributed this behavior to ion channeling effects.

This publication has 16 references indexed in Scilit: