Optical properties of AlxGa1−x As
- 15 July 1986
- journal article
- conference paper
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 60 (2) , 754-767
- https://doi.org/10.1063/1.337426
Abstract
We report pseudodielectric function 〈ε〉 data for AlxGa1−xAs alloys of target compositions x=0.00–0.80 in steps of 0.10 grown by liquid‐phase epitaxy and measured by spectroellipsometry. Cleaning procedures that produce abrupt interfaces between the technologically relevant alloys x≤0.5 and the ambient are described. The 〈ε2〉 data are corrected near the fundamental direct absorption edge by a Kramers–Kronig analysis of the 〈ε1〉 data to circumvent a limitation of the rotating‐analyzer ellipsometric technique. The results and the associated pseudooptical functions 〈n〉, 〈R〉, and 〈α〉 are listed in tabular form. Accurate values of the E0 and E1 threshold energies are determined from these spectra by Fourier methods. From these values, and from similar values for a GaAs‐capped AlAs sample grown by organometallic chemical vapor deposition, the dependencies of the E0 and E1 interband critical point energies on nominal composition are obtained. Cubic polynomial representations of these dependences are determined to allow nominal Al fractions to be calculated analytically from optical threshold data. The systematic behavior of 〈ε1〉 at 1.5 eV and of the E2 peak in 〈ε2〉 near 5 eV show that scatter in these data is less than 1% of the peak values of the spectra for x≤0.5. For x≥0.6 the peak data appear to show systematic discrepancies indicating that chemical cleaning cannot completely remove surface overlayers on high‐Al‐content samples. Optical measurements for a sample with x=0.9 also reveal the oxidation of high‐Al samples proceeds irregularly and not along a uniform spatial front. Interpolation procedures to obtain approximate representations of dielectric function spectra at compositions other than those measured are discussed, and suggestions for improving accuracy in future optical measurements on these and related materials are also given.This publication has 32 references indexed in Scilit:
- Photoreflectance characterization of interband transitions in GaAs/AlGaAs multiple quantum wells and modulation-doped heterojunctionsApplied Physics Letters, 1985
- Ellipsometric studies of electronic interband transitions inPhysical Review B, 1984
- Parabolic quantum wells with thesystemPhysical Review B, 1984
- Analysis of optical spectra by Fourier methods: filtering and least-squares regression in reciprocal spaceJournal of the Optical Society of America, 1983
- Band-gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devicesJournal of Vacuum Science & Technology B, 1983
- Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eVPhysical Review B, 1983
- Refractive index of Ga1‐xAlxAs at 1.96 eVCrystal Research and Technology, 1982
- Qualitative and quantitative assessments of the growth of (Al,Ga) As-GaAs heterostructures by in situ ellipsometryRevue de Physique Appliquée, 1981
- Dielectric function and surface microroughness measurements of InSb by spectroscopic ellipsometryJournal of Vacuum Science and Technology, 1980
- Refraction and Dispersion of Synthetic SapphireJournal of the Optical Society of America, 1962