Human Fatal Zaire Ebola Virus Infection Is Associated with an Aberrant Innate Immunity and with Massive Lymphocyte Apoptosis
Top Cited Papers
Open Access
- 5 October 2010
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Neglected Tropical Diseases
- Vol. 4 (10) , e837
- https://doi.org/10.1371/journal.pntd.0000837
Abstract
Ebolavirus species Zaire (ZEBOV) causes highly lethal hemorrhagic fever, resulting in the death of 90% of patients within days. Most information on immune responses to ZEBOV comes from in vitro studies and animal models. The paucity of data on human immune responses to this virus is mainly due to the fact that most outbreaks occur in remote areas. Published studies in this setting, based on small numbers of samples and limited panels of immunological markers, have given somewhat different results. Here, we studied a unique collection of 56 blood samples from 42 nonsurvivors and 14 survivors, obtained during the five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. Using Luminex technology, we assayed 50 cytokines in all 56 samples and performed phenotypic analyses by flow cytometry. We found that fatal outcome was associated with hypersecretion of numerous proinflammatory cytokines (IL-1β, IL-1RA, IL-6, IL-8, IL-15 and IL-16), chemokines and growth factors (MIP-1α, MIP-1β, MCP-1, M-CSF, MIF, IP-10, GRO-α and eotaxin). Interestingly, no increase of IFNα2 was detected in patients. Furthermore, nonsurvivors were also characterized by very low levels of circulating cytokines produced by T lymphocytes (IL-2, IL-3, IL-4, IL-5, IL-9, IL-13) and by a significant drop of CD3+CD4+ and CD3+CD8+ peripheral cells as well as a high increase in CD95 expression on T lymphocytes. This work, the largest study to be conducted to date in humans, showed that fatal outcome is associated with aberrant innate immune responses and with global suppression of adaptive immunity. The innate immune reaction was characterized by a “cytokine storm,” with hypersecretion of numerous proinflammatory cytokines, chemokines and growth factors, and by the noteworthy absence of antiviral IFNα2. Immunosuppression was characterized by very low levels of circulating cytokines produced by T lymphocytes and by massive loss of peripheral CD4 and CD8 lymphocytes, probably through Fas/FasL-mediated apoptosis. Ebolavirus, especially the species Zaïre (ZEBOV), causes a fulminating hemorrhagic fever syndrome resulting in the death of most patients within a few days. In vitro studies and animal models have brought some insight as to the immune responses to ZEBOV infection. However, human immune responses have as yet been poorly investigated, mainly due to the fact that most outbreaks occur in remote areas of central Africa. Published studies, based on small numbers of biological samples have given conflicting results. We studied a unique collection of 50 blood samples obtained during five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. We measured the plasma levels of 50 soluble factors known to be involved in immune responses to viral diseases. For the first time, using a cell staining technique, we analyzed circulating lymphocytes from ZEBOV-infected patients. We found that fatal outcome in humans is associated with aberrant innate immunity characterized by a “cytokine storm,” with hypersecretion of numerous proinflammatory mediators and by the noteworthy absence of antiviral interferon. The adaptive response is globally suppressed, showing a massive loss of CD4 and CD8 lymphocytes and the immune mediators they produce. These findings may have important pathological and therapeutic implications.Keywords
This publication has 73 references indexed in Scilit:
- Evasion of Interferon Responses by Ebola and Marburg VirusesJournal of Interferon & Cytokine Research, 2009
- Ebola Virus Protein VP35 Impairs the Function of Interferon Regulatory Factor-Activating Kinases IKKε and TBK-1Journal of Virology, 2009
- Structure of the Ebola VP35 interferon inhibitory domainProceedings of the National Academy of Sciences, 2009
- Whole-Genome Expression Profiling Reveals That Inhibition of Host Innate Immune Response Pathways by Ebola Virus Can Be Reversed by a Single Amino Acid Change in the VP35 ProteinJournal of Virology, 2008
- Inhibition of IRF-3 Activation by VP35 Is Critical for the High Level of Virulence of Ebola VirusJournal of Virology, 2008
- Ebola Virus VP24 Proteins Inhibit the Interaction of NPI-1 Subfamily Karyopherin α Proteins with Activated STAT1Journal of Virology, 2007
- Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinantsProceedings of the National Academy of Sciences, 2007
- The VP35 Protein of Ebola Virus Inhibits the Antiviral Effect Mediated by Double-Stranded RNA-Dependent Protein Kinase PKRJournal of Virology, 2007
- Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits Alpha/Beta Interferon Production Induced by RIG-I SignalingJournal of Virology, 2006
- Ebola Virus VP24 Binds Karyopherin α1 and Blocks STAT1 Nuclear AccumulationJournal of Virology, 2006