Abstract
I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neighboring path. With this definition (and assuming the generic condition) I prove that superluminal travel requires weak-energy-condition violation.

This publication has 8 references indexed in Scilit: