Spin systems on hierarchical lattices. II. Some examples of soluble models

Abstract
Several examples are given of soluble models of phase-transition phenomena utilizing classical discrete spin systems with nearest-neighbor interaction on hierarchical lattices. These include critical exponents which depend continuously on a parameter, the Potts model on a lattice with two different coupling constants, surface tension, and excess free energy of a line of defects. In each case we point out similarities and differences with a corresponding Bravais-lattice model.