Abstract
Optical switching can be performed by using optical amplifiers combined with a passive waveguiding network. Recently, most of the effort in optical amplifier switch modules have been focused on monolithic switches in which the entire device is fabricated on an InP substrate together with the semiconductor optical amplifiers (SOA's). In this paper, we investigate the use of SOA's with passive polymer waveguides to make hybrid switches of varying sizes. The optical amplifiers serve dual purposes, gating the signal and amplifying the signal. Amplification is needed in order to offset the losses associated with the passive waveguide elements as well as the losses from component misalignments in the switch module. Our analysis finds the largest switch module size that can be made with the architecture used. We also calculate the maximum number of switch modules which can be cascaded in order to retain a bit-error rate (BER) under 10/sup -9/.