Peak Shape Distortions in the Capillary Electrophoretic Separations of Strong Electrolytes When the Background Electrolyte Contains Two Strong Electrolyte Co-Ions

Abstract
A series of 25 mM phosphate buffer background electrolytes were prepared from phosphoric acid and mixtures of lithium hydroxide and tetrabutylammonium hydroxide as pH adjusters and sources of background electrolyte co-ions. These background electrolytes were used for the capillary electrophoretic separation of quaternary ammonium analytes. Abnormally distorted peaks, different from the simple characteristic triangular peaks usually attributed to electromigration dispersion, were observed. In order to understand the origin of the greatly distorted peaks, capillary electrophoretic separations with two co-ion background electrolytes were numerically simulated using a mathematical model of the electrophoretic process. Generalized peak shape rules were derived from the simulations which can be used to predict the shape of the analyte, co-ions, and counterion concentration peaks, as well as the local electric field strength changes. Abnormal peak shape and peak disappearance can occur when the analyte peak and the noncomigrating system peaks overlap.

This publication has 13 references indexed in Scilit: