Binding energies in benzene dimers: Nonlocal density functional calculations

Abstract
The interaction energy and minimum energy structure for different geometries of the benzene dimer have been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations provides a promising first step to elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces and van der Waals crystals.
All Related Versions