Evidence for the Involvement of Protein Kinase C in Depression of Endothelium-Dependent Vascular Responses in Spontaneously Hypertensive Rats

Abstract
The goal of the present study was to evaluate the role of protein kinase C (PKC) in the depression of endothelium-dependent vacular response in spontaneously hypertensive Okamoto rats (SHR). Aortae from SHR demonstrated a decreased relaxant response to acetylcholine (Ach) as compared to aortae from normotensive Wistar-Kyoto (WKY) rats, while papaverine lowered the force of aorta to a similar degree in both strains of rats. PKC inhibitors, H-7 (5 × 10–6 M) and chelerythrine chloride (10–6 M), produced a greater decrease in the force developed by the aortae from SHR vs. WKY rats both in intact and chemically permeabilized tissues. In SHR aortae PKC inhibitors enhanced relaxation to Ach to a greater extent as compared to WKY aortae. Furthermore, in the presence of PKC inhibitors, the constrictor responses of SHR aortae to Ach were transformed into relaxant responses, and the concentration-response curve to Ach was shifted to the left. The sensitivity of aortae from SHR to authentic nitric oxide (NO) was lowere compared to WKY rats. EC50s for authentic NO in SHR and WKY rat aortae were different: –2.9 ± 0.15 × 10–6 M and 4.58 ± 0.1 × 10–7 M (n = 15, p < 0.001), respectively. Bioassay experiments using SHR aortae showed that the addition of chelerythrine (10–6 M) to the detector superfusate caused relaxation during treatment of the donor segment with Ach, indicating that the sensitivity of the aortae to NO had been restored. When SHR detector ring was substituted for denuded aortae from WKY rats and PKC inhibitors were not added to the detector superfusate, the relaxation of the detector aortae was also close to the normal Ach-induced relaxation. WKY aortae demonstrated a positive relationship between Ach-stimulated NO release and relaxant response amplitudes (correlation coefficient r = 0.905, p < 0.001, n = 10). In contrast, there was a significant negative correlation in SHR aortae (r = –0.712, p < 0.05, n = 10). Detection of NO release by chemiluminescence showed no significant difference in NO release in SHR and WKY aortae. Taken together, these data suggest that the blunted endothelium-dependent relaxations seen in SHR aortae are mainly due to a decreased sensitivity of vascular smooth muscle to EDRF/NO resulting from an increased PKC activity.