Abstract
Early stages of unsteady viscous flows around a circular cylinder at Reynolds numbers of 3 × 103 and 9.5 × 103 are analysed numerically by direct integration of the Navier–Stokes equations – a fourth-order finite-difference scheme is used for the resolution of the stream-function equation and a second-order one for the vorticity-transport equation. Evolution with time of the flow structure is studied in detail. Some new phenomena are revealed and confirmed by experiments.The influence of the grid systems and the downstream boundary conditions on the flow structure and the velocity profiles is reported. The computed results are compared qualitatively and quantitatively with experimental visualization and measurements. The comparison is found to be satisfactory.