Acquired Cellular Resistance to Flavopiridol in a Human Colon Carcinoma Cell Line Involves Up-Regulation of the Telomerase Catalytic Subunit and Telomere Elongation. Sensitivity of Resistant Cells to Combination Treatment with a Telomerase Inhibitor
- 1 November 2003
- journal article
- Published by Elsevier in Molecular Pharmacology
- Vol. 64 (5) , 1101-1108
- https://doi.org/10.1124/mol.64.5.1101
Abstract
Flavopiridol is a broad-spectrum inhibitor of cyclin-dependent kinases and of global transcription via the inhibition of positive transcription elongation factor b (P-TEFb). Although flavopiridol is currently undergoing phase II clinical trials, acquired cellular resistance to the compound during treatment is a potential problem, as it is with almost all current anticancer agents. A HCT116 human colon carcinoma cell line with an acquired 8-fold resistance to flavopiridol has been established. We report here that there are changes in these resistant cells in terms of telomere length and telomerase activity, whereas no change in the expression of the P-TEFb subunits CDK9, cyclin T1, cyclin T2a, or cyclin T2b was observed. The level of mRNA expression for the telomerase catalytic subunit hTERT was increased over 2-fold in the resistant cells, and mean telomere length was found to be 2 kb longer than the parental length, although telomerase activity was unchanged. The level of mRNA expression for the telomeric binding protein Pot1 was also increased. We also report that treatment of HCT116 cells with a combination of the G-quadruplex interacting telomerase inhibitor BRACO-19 and flavopiridol results in a 3-fold decrease in population doubling and prevents recovery from treatment with either compound alone. Treatment of flavopiridol-resistant cells with BRACO-19 alone also led to rapid inhibition of cell growth, which is not observed in the parental line. The finding that only the resistant line, with up-regulated telomerase, responds to this G-quadruplex inhibitor is consistent with the hypothesis that the mechanism of BRACO-19 down-regulation of cell growth directly involves the targeting of telomeres and telomerase.Keywords
This publication has 44 references indexed in Scilit:
- Mechanism of Human Telomerase Inhibition by BIBR1532, a Synthetic, Non-nucleosidic Drug CandidateJournal of Biological Chemistry, 2002
- Senescence Induced by Altered Telomere State, Not Telomere LossScience, 2002
- Telomere dysfunction: multiple paths to the same endOncogene, 2002
- Interaction between P-TEFb and the C-Terminal Domain of RNA Polymerase II Activates Transcriptional Elongation from Sites Upstream or Downstream of Target GenesMolecular and Cellular Biology, 2002
- Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and HumansScience, 2001
- Flavopiridol Inhibits P-TEFb and Blocks HIV-1 ReplicationJournal of Biological Chemistry, 2000
- Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosisOncogene, 1998
- Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2Nature Genetics, 1997
- Specific Association of Human Telomerase Activity with Immortal Cells and CancerScience, 1994
- Potent Inhibition of Cdc2 Kinase Activity by the Flavonoid L86-8275Biochemical and Biophysical Research Communications, 1994