Many-body wave function for a quantum dot in a weak magnetic field

Abstract
The ground states of parabolically confined electrons in a quantum dot are studied by both direct numerical diagonalization and quantum Monte Carlo (QMC) methods. We present a simple but accurate variational many-body wave function for the dot in the limit of a weak magnetic field. The wave function has the center-of-mass motion restricted to the lowest-energy state and the electron-electron interaction is taken into account by a Jastrow two-body correlation factor. The optimized wave function has an accuracy very close to the state-of-the-art numerical diagonalization calculations. The results and the computational efficiency indicate that the presented wave function combined with the QMC method suits ideally for studies of large quantum dots.