Protective films of nanophase diamond deposited directly on zinc sulfide infrared optics

Abstract
Nanophase diamond films can be grown at room temperature with a laser plasma discharge source without the use of any catalyst. This technique produces films that adhere readily to materials for which there are important applications as protective coatings. Described here is a study of the bonding and properties realized with the direct deposition of nanophase diamond on the II-VI compound of zinc sulfide. It was shown that adhesion and mechanical properties of the films can be correlated with the amounts of defects and impurities in the zinc sulfide substrates. In all cases significant interfacial layers caused by the deep penetration of carbon atoms into the substrates were observed. Resistance to wear was estimated with a modified sand blaster, and results indicated that only 1 μm coating of nanophase diamond can increase lifetimes of the zinc sulfide samples by a factor better than 5. Protection afforded by the nanophase diamond under harsh environmental conditions of rain impacts was also described.