Monte Carlo simulation of correlated electrons in disordered systems

Abstract
The properties of many-electron states in disordered systems with long-range electron-eletron interaction are investigated by means of a Monte Carlo simulation. Using the Metropolis algorithm, three-dimensional systems up to 512 sites are systematically analysed. The low-lying excitations are investigated in order to distinguish between one-particle and many-particle hopping. In the interesting regime in which disorder and correlation effects are equally important we find that variable-range hopping is insignificant for electron transfer when compared with the contribution from nearest-neighbour one-electron hopping processes as well as variable-number hopping.