HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen‐induced necrosis associated with both compatible and incompatible plant interactions
Open Access
- 6 September 2004
- journal article
- Published by Wiley in Molecular Microbiology
- Vol. 54 (2) , 353-365
- https://doi.org/10.1111/j.1365-2958.2004.04285.x
Abstract
Summary: Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non‐host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with effective plant defense. Both interactions require the Hrp (HR and pathogenicity) type III secretion system (TTSS), which injects Hop (Hrp outer protein) effectors into plant cells. Here, we demonstrate that HopPtoN is translocated into tomato cells via the Hrp TTSS. A hopPtoN mutant produced eightfold more necrotic ‘speck’ lesions on tomato leaves than did DC3000, but the mutant and the wild‐type strain grew to the same level in infected leaves. In non‐host N. tabacum leaves, the hopPtoN mutant produced more cell death, whereas a DC3000 strain overexpressing HopPtoN produced less cell death and associated electrolyte leakage in comparison with wild‐type DC3000. Transient expression of HopPtoN via infection with a PVX viral vector enabled tomato and N. benthamiana plants to tolerate, with reduced disease lesions, challenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively. HopPtoN showed cysteine protease activity in vitro, and hopPtoN mutants altered in the predicted cysteine protease catalytic triad (C172S, H283A and D299A) lost HR suppression activity. These observations reveal that HopPtoN is a TTSS effector that can suppress plant cell death events in both compatible and incompatible interactions.Keywords
This publication has 48 references indexed in Scilit:
- Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell deathThe Plant Journal, 2004
- Understanding the Functions of Plant Disease Resistance ProteinsAnnual Review of Plant Biology, 2003
- Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial PathogenPseudomonas syringae [W]Plant Cell, 2003
- Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated ResistanceCell, 2003
- A Pseudomonas syringae pv. tomato DC3000 Hrp (Type III Secretion) Deletion Mutant Expressing the Hrp System of Bean Pathogen P. syringae pv. syringae 61 Retains Normal Host Specificity for TomatoMolecular Plant-Microbe Interactions®, 2003
- A Gene in the Pseudomonas syringae pv. tomato Hrp Pathogenicity Island Conserved Effector Locus, hopPtoA1, Contributes to Efficient Formation of Bacterial Colonies in Planta and Is Duplicated Elsewhere in the GenomeMolecular Plant-Microbe Interactions®, 2002
- A Functional Screen for the Type III (Hrp) Secretome of the Plant Pathogen Pseudomonas syringaeScience, 2002
- RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in ArabidopsisCell, 2002
- Plant pathogens and integrated defence responses to infectionNature, 2001
- TheavrRpm1Gene ofPseudomonas syringaepv.maculicolaIs Required for Virulence on ArabidopsisMolecular Plant-Microbe Interactions®, 1995