Mean- Field Approximation and a Small Parameter in Turbulence Theory
Preprint
- 17 February 2000
Abstract
Numerical and physical experiments on two-dimensional (2d) turbulence show that the differences of transverse components of velocity field are well described by a gaussian statistics and Kolmogorov scaling exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one can assume existence of critical space-dimensionality $d=d_{c}$, at which the energy flux and all odd-order moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant. At $d0$ and $r/L\to 0$ in three-dimensional flows in close agreement with experimental data. In addition, some new exact relations between correlation functions of velocity differences are derived. It is also predicted that the single-point pdf of transverse velocity difference in developing as well as in the large-scale stabilized two-dimensional turbulence is a gaussian.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: