Abstract
Numerical and physical experiments on two-dimensional (2D) turbulence show that the differences of transverse components of velocity field are well described by Gaussian statistics and Kolmogorov scaling exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one can assume the existence of a critical space dimensionality d=d(c), at which the energy flux and all odd-order moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant. At d0 and r/L-->0 in three-dimensional flows in close agreement with experimental data. In addition, some exact relations between correlation functions of velocity differences are derived. It is also predicted that the single-point probability density function of transverse velocity components in developing as well as in the large-scale stabilized two-dimensional turbulence is a Gaussian.