Abstract
Two fish species (rainbow trout and common carp) that differ in natural diet also exhibit differences in the adaptive flexibility of their intestinal nutrient transport mechanisms in response to changes in dietary nutrient composition. When carp ingested a feed that was 24% glucose by weight, there was an increase in both the intestinal length and rates of nutrient absorption, particularly for glucose, when compared to carp fed an isonitrogenous diet devoid of digestible carbohydrate. As a result, the intestine's uptake capacity (nmol of glucose and proline absorbed per min per g body weight) was higher in carp fed the 24% glucose feed. Due to the greater increase in glucose uptake, the ratio of glucose uptake relative to proline (G/P ratio) was higher in carp fed the 24% glucose. Thus, carp are able to adapt to the quantity, and apparently also to the type, of digestible carbohydrate in the diet. In contrast, glucose uptake by trout was unresponsive to the quantity of dietary carbohydrate. Insted, the elevated glucose paradoxically resulted in a greater uptake capacity for proline and a lower G/P ratio. Hence, the adaptive capabilities of the intestinal nutrient transport processes are matched to the potential variation in the carbohydrate content of the natural diet.