Abstract
Feulgen acid hydrolysis was performed on ascites tumour cells labelled with radioactive DNA-precursors. The development of fragments of apurinic acid and the extraction of purines were studied by monitoring the variations in the extraction rate during the hydrolysis when sodium chloride was either present or absent from the hydrolysis solution. The changes in the rate of extraction of purines and the alterations in the initial retardation of the apurinic acid extracting process followed approximately the same pattern. The extractability of apurinic acid fragments during hydrolysis in 0.3m HCl was found to be a maximum when the sodium chloride concentration was about 1m. Sudden exchange experiments, in which acid was substituted for sodium chloride after various times of hydrolysis, revealed a successive shortening of the extractable fragments during the low acid concentration hydrolysis. The results strengthen the view that, during hydrolysis, apurinic acid is lost from the cells through a reaction whose form is determined, first, by an initial retardation of the depolymerization, second, by the maximum length at which fragments developed through the depolymerization become soluble and are lost by diffusion, and last, at low acid concentrations, by a mechanism whose influence is equivalent to the presence of bonds between the fragments and an unextractable stable structure.

This publication has 11 references indexed in Scilit: