High Performance Liquid Chromatography Coupled with Radioactivity Detection: A Powerful Tool for Determining Drug Metabolite Profiles in Biological Fluids

Abstract
High performance liquid chromatography coupled with continuous radioactivity detection rep­resents an advancement in drug metabolism research. Using radioactive substances labelled in biologically stable positions, all metabolites can be specifically detected by radioactivity measure­ment. Thus no clean-up of biological fluids is required prior to HPLC. This can prevent artefact formation from unstable metabolites, reduces recovery problems and facilitates quantitation. Separation of highly polar and unpolar metabolites is possible in a single chromatographic run using gradient elution and reversed phase materials. This technique is also well-suited for prepara­tive isolation and purification of metabolites for subsequent structure elucidation. Various metabolite profiles of drugs labelled with carbon-14 or tritium are shown. Metabolites of the following drugs are presented: norfenefrine, etozolin, thymoxamine, naloxone, and levobunolol. We review the general methodology and report our experience with this technique. In principle, this technique may be useful for all biological systems in which tracer techniques are applied.