Role of neuronal nitric oxide synthase in mediating renal hemodynamic changes during pregnancy

Abstract
Renal plasma flow (RPF) and glomerular filtration rate (GFR) are markedly increased during pregnancy. We recently reported that the renal hemodynamic changes observed during pregnancy in rats are associated with enhanced renal protein expression of neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine the role of nNOS in mediating renal hemodynamic changes observed during pregnancy. To achieve this goal, we examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) on kidney function in normal conscious, chronically instrumented virgin (n = 6) and pregnant rats (n = 9) at day 16 of gestation. Infusion of 7-NI had no effect on RPF (4.7 ± 0.7 vs. 4.8 ± 0.9 ml/min), GFR (2.2 ± 0.2 vs. 2.5 ± 0.4 ml/min), or mean arterial pressure (MAP; 127 ± 7 vs. 129 ± 10 mmHg) in virgin rats. In contrast, 7-NI infused into pregnant rats decreased RPF (8.9 ± 1.6 vs. 6.5 ± 1.4 ml/min) and GFR (4.4 ± 0.7 vs. 3.3 ± 0.7 ml/min) while having no effect on MAP (123 ± 4 vs. 123 ± 3 mmHg). In summary, inhibition of nNOS in pregnant rats at midgestation results in significant decreases in RPF and GFR. nNOS inhibition in virgin rats had no effect on renal hemodynamics. These data suggest that nNOS may play a role in mediating the renal hemodynamic changes that occur during pregnancy.