In vitro characterization and biomechanical optimization of a biodegradable particulate composite bone cement

Abstract
We have developed a biodegradable particulate composite bone cement and used in vitro and in vivo methods for studying its suitability for orthopaedic applications. The composite matrix consists of gelatin, water, and sodium salicylate. The particulate phase is made up of powdered and particulate (355–600 μm diameter) tricalcium phosphate. Paraformaldehyde (0.1% to 0.5% by weight) is used as a matrix cross-linking agent. The effects of incubation time, particulate volume fraction, density of the individual particles, water content, concentration of crosslinking agent, and freeze-drying on the unconfined compressive strength and modulus of the particulate composite were measured. Compressive strengths of 7 MPa and moduli of 65 MPa could be achieved. Mechanical properties depended critically upon the water content of the particulate composite, with values of strength and modulus decreasing rapidly outside a range of 10–14% of specimen dry weight. High-density tri-calcium phosphate particulate produced cement with twice the strength found with porous particulate. In a companion study we document in vivo performance of this particulate composite in an animal model system.