Density of states, hybridization, and band-gap evolution inAlxGa1xNalloys

Abstract
The electronic structure of the wurtzite AlxGa1xN alloy system has been studied for numerous values of Al concentration x ranging from 0 (pure GaN) to 1 (pure AlN). The occupied and unoccupied partial density of states was measured for each alloy using synchrotron radiation excited soft x-ray absorption and emission spectroscopies. High-resolution x-ray emission spectroscopy allowed the motion of the elementally resolved bulk valence-band maximum to be measured as a function of Al concentration. Using this technique we estimate that the value of the band-gap bowing parameter for AlxGa1xN is zero. Furthermore, the x-ray emission spectra revealed resonantlike emission at approximately 19 eV below the GaN valence-band maximum. By measuring the intensity of this feature as a function of Ga content we prove conclusively that this emission arises from hybridization of N 2p and Ga 3d states. Finally, we find that the N K- and Al K-absorption spectra depend strongly on the photon angle of incidence with respect to the surface normal. We explain this in terms of orbital anisotropy in AlxGa1xN.

This publication has 22 references indexed in Scilit: