Role of Type X Collagen on Experimental Mineralization of Eggshell Membranes

Abstract
Type X collagen is a transient and developmentally regulated collagen that has been postulated to be involved in controlling the later stages of endochondral bone formation. However, the role of this collagen in these events is not yet known. In order to understand the function of type X collagen, if any, in the process of biomineralization, the properties of type X collagen in eggshell membranes were further investigated. Specifically, calvaria-derived osteogenic cells were tested for their ability to mineralize eggshell membranes in vitro. Immunohistochemistry with specific monoclonal antibodies was used to correlate the presence or absence of type X collagen or its propeptide domains with the ability of shell membranes to be mineralized. The extent of mineralization was assessed by Von Kossa staining, scanning electron microscopy and energy-dispersive spectroscopy. The results indicate that the non-helical domains of type X collagen must be removed to facilitate the cell-mediated mineralization of eggshell membranes. In this tissue, intact type X collagen does not appear to stimulate or support cell-mediated mineralization. We postulate that the non-helical domains of type X collagen function in vivo to inhibit mineralization and thereby establish boundaries which are protected from mineral deposition.